


showed that lesions of the VMH produce obesity due to both increased food intake and
decreased energy expenditure (see (King, 2006)). However, many of these results were
questioned because the electrolytic insults and knife cuts used to lesion the VMH likely
damaged the surrounding regions (such as the arcuate nucleus) as well as neuronal fibers
passing through the VMH (Gold, 1973). Recent mouse genetic studies have begun to
circumvent these issues by performing deletion of key genes specifically in VMH neurons.
These studies were based on the finding that a transcription factor, steroidogenic factor-1
(SF1), is expressed exclusively in the VMH neurons within the brain (Ikeda et al., 1995).
Deletion of SF1 in mice disrupts VMH structure (Dellovade et al., 2000) and leads to
obesity (Majdic et al., 2002). These findings supported the model that VMH neurons are
physiological regulators of body weight homeostasis.

Multiple metabolic signals have been demonstrated to regulate energy homeostasis via
actions in the VMH. For example, leptin directly activates SF1 neurons in the VMH and
selective deletion of leptin receptors from SF1 neurons produces obesity (Bingham et al.,
2008; Dhillon et al., 2006). Estrogen acts on the estrogen receptor Ŭ (ERŬ) expressed by
VMH neurons to regulate energy expenditure as animals with ERŬ knocked down in the
VMH develop obesity due to reduced energy expenditure (Musatov et al., 2007). Likewise,
knock-down of brain-derived neurotrophic factor (BDNF) in the VMH and dorsomedial
hypothalamic nucleus produces hyperphagic obesity (Unger et al., 2007).

Interestingly, all of the aforementioned hormonal and neural signals have been shown to
activate the phosphatidyl inositol 3-kinase (PI3K) signalling pathway in neurons. For
example, leptin activates the PI3K pathway in the hypothalamus (Niswender et al., 2001;
Zhao et al., 2002), and pharmacological evidence indicates that leptin’s effects on feeding
(Zhao et al., 2002) and lipolysis (Buettner et al., 2008) require intact PI3K activity in the
hypothalamus. Similarly, estrogen regulates expression of PI3K subunits in the
hypothalamus including the VMH and the PI3K/Akt cascade mediates estrogen’s actions in
hypothalamic neurons (Malyala et al., 2008). Furthermore, BDNF activates the PI3K
pathway in neurons to promote synaptic formation (Yoshii and Constantine-Paton, 2007).
Therefore, PI3K signalling in VMH neurons may be a common pathway that integrates
metabolic cues to provide a coordinated control of energy homeostasis. In the present study,
we generated a mouse model with reduced PI3K signalling specifically in the VMH to
assess the physiological relevance of PI3K in VMH neurons in the regulation of energy
balance.

Results and Discussions

Generation of mice lacking PI3K in VMH neurons

PI3K consists of an 85kDa regulatory subunit (p85) and a 110kDa catalytic subunit (p110)
(Cantley, 2002). As the primary insulin responsive isoform of PI3K, p110Ŭ is selectively
activated by the insulin receptor substrate (IRS) signaling complex and is required for IRS-
associated PI3K activity in the hypothalamus (Foukas et al., 2006; Knight et al., 2006).
Thus, we crossed mice carrying loxP flanked p110Ŭ alleles (p110Ŭlox/lox mice) (Zhao et al.,
2006) with transgenic SF1-Cre mice which express Cre-recombinase driven by SF1
regulatory elements (Dhillon et al., 2006). These crosses produced mice lacking p110Ŭ only
in SF1 neurons (p110Ŭlox/lox/SF1-Cre mice) and mice bearing p110Ŭlox/lox alleles alone. The
latter group of littermates served as controls in all experiments.

We first validated the selective deletion of p110Ŭ in SF1 cells in p110Ŭlox/lox/SF1-Cre mice.
We found that the p110Ŭ alleles were deleted from the genome in tissues that express SF1,
including the hypothalamus, pituitary, adrenal gland and testis (Zhao et al., 2001), whereas
the p110Ŭ allele remained intact in tissues that do not express SF1 (e.g. the cortex and
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brainstem) (Supple Fig. 1a). Further, we found that p110Ŭ mRNA was significantly reduced
in the VMH from p110Ŭlox/lox/SF1-Cre mice, while expression of p110ɓ, another p110
isoform present in the hypothalamus (Cantley, 2002), was not changed (Supple Fig. 1b).
Finally, we crossed a FoxO1GFP reporter allele (Fukuda et al., 2008) to the mice lacking
p110Ŭ in SF-1 neurons. This allowed assessment of PI3K activity specifically in SF1
neurons by monitoring FoxO1GFP translocation between the nucleus and cytoplasm
(Fukuda et al., 2008). We found that while FoxO1GFP was localizifically in SF1



energy required for physical activities, basal metabolism, and thermogenesis evoked by
stimuli such as food intake (Butler and Kozak, 2010; Castaneda et al., 2005). Since neither
ambulatory movements nor rearing activities were significantly changed in p110Ŭlox/lox/SF1-
Cre mice (Figs. 2f and 2g), we conclude that the decreases in energy expenditure observed
in p110Ŭlox/lox/SF1-Cre mice are due to reduced basal metabolic rate and/or diet-induced



in the regulation of energy homeostasis. However, the critical brain sites where the PI3K
pathway mediates leptin signal to regulate energy homeostasis have not been fully explored.
We found that in p110Ŭlox/lox control mice, intracerebroventricular (i.c.v.) injections of
leptin significantly inhibited food intake by decreasing both meal size and meal frequency
over a 24 hr period (Figs. 4a–4c). In contrast, in p110Ŭlox/lox/SF1-Cre mice leptin-induced
inhibition of food intake was significantly blunted (Fig. 4a). Leptin-induced reduction in
meal size treaded to be blunted (Fig. 4b), while effects of leptin on meal frequency remained
unchanged (Fig. 4c). Administration of leptin also promoted fat oxidation in control mice,
demonstrated by decreased respiratory exchange rate (RER), while this effect was
significantly blunted in p110Ŭlox/lox/SF1-Cre mice (Fig. 4d). Body weight of p110Ŭlox/lox

mice was significantly reduced 24 hr after leptin injections, whereas acute leptin
administration did not reduce body weight of p110Ŭlox/lox/SF1-Cre mice (Fig. 4e). These
results indicate that PI3K signalling in VMH neurons is required for mediating acute effects
of exogenous leptin on energy homeostasis.

We have identified PI3K-p110Ŭ as a mediator downstream of leptin receptor activation in
SF1 neurons. However, it is notable that we observed differences between mice lacking
PI3K in SF1 neurons compared to mice lacking leptin receptors in these neurons. For
instance,p110Ŭlox/lox/SF1-Cre mice do not show hyperphagia, although the acute appetite-
suppressing responses to exogenous leptin at a pharmacological dose are blunted in these
mice, suggesting that other signaling pathways may exist, which compensate for impaired
PI3K signaling under resting conditions. While mice lacking leptin receptors in SF1 neurons
develop obesity on both regular chow and HFD (Bingham et al., 2008; Dhillon et al., 2006),
p110Ŭlox/lox/SF1-Cre mice show increased sensitivity to diet-induced obesity but maintain
normal body weight when fed with regular chow. Moreover, SF1-specific deletion of leptin
receptors causes insulin resistance before onset of obesity (Bingham et al., 2008), whereas
p110Ŭlox/lox/SF1-Cre mice do not show deficits in glucose homeostasis (Supple Fig. 2).
Therefore, it is likely that leptin actions in SF1 neurons are also partly mediated by other
signalling pathways, such as the Jak-Stat3 or ERK pathways (Robertson et al., 2008).
Indeed, SF1-specific deletion of suppressor of cytokine signaling-3 (Socs-3), a potent
feedback inhibitor of the leptin-induced Jak-Stat3 pathway (Bjorbaek et al., 1998; Howard et
al., 2004), leads to improved glucose homeostasis (Zhang et al., 2008), supporting the
hypothesis that the Jak-Stat3 pathway may mediate leptin actions in the SF1 neurons to
control glycemic balance. In summary, our results indicate that PI3K activity in VMH
neurons plays a physiologically relevant role in the regulation of energy expenditure which
may play a key role in the physiological response to excess intake of calories. Moreover, it
will be interesting to assess whether this response is altered during the development of
obesity.

Experimental Procedures

Animal Care

Care of all animals and procedures were approved by the UT Southwestern Medical Center.
Mice were housed in a temperature-controlled environment in groups of two to four at
22°C–24°C using a 12 hr light/12 hr dark cycle. The mice were fed either standard chow
(4% fat, #7001, Harlan-Teklad, Madison, WI) or HFD (42% fat, #88137, Harlan Teklad)
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Deletion of p110Ŭ in SF1 neurons increases sensitivity to diet-induced obesity. (a) Weekly
body weight was measured in group housed male mice weaned on regular chow (n=12/
genotype). (b) Body composition was measured in 15-week old male mice fed with regular
chow (n=12/genotype). (c) Weekly body weight was measured in group housed male mice
weaned on HFD (n=16 or 23/genotype). (d) Body composition was measured in 18-week
old male mice fed with HFD (n=10/genotype). (e) Serum leptin levels were measured in 7-
month old male mice at both fed and fasted conditions (n=6/genotype). Data are presented as
mean ± SEM, and * P<0.05 and **P<0.01 between p110Ŭlox/lox/SF1-Cre mice and
p110Ŭlox/lox mice.
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Fig. 2.
Deletion of p110Ŭ in SF1 neurons reduces energy expenditure. (a–b) Daily food intake was
measured in 7-week old male mice with comparable body weight fed with regular chow (a)
or with HFD (b) (n=11–15/genotype). (c–g) Seven-week old chow-fed male mice (n=11 or
16/genotype) were fed with HFD for 2 weeks and matched for body weight (p110Ŭlox/lox:
23.8±0.7 g vs p110Ŭlox/lox/SF1-Cre: 24.9±0.7 g, P=0.31), followed by metabolic analyses
using the TSE metabolic chambers. Data are presented as mean ± SEM, and * P<0.05 and
** P<0.01 between p110Ŭlox/lox/SF1-Cre mice and p110Ŭlox/lox mice.
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Fig. 3.
Deletion of p110Ŭ in SF1 neurons disrupts the thermogenic regulation in response to HFD
feeding and fasting. (a–d) Six-month old chow-fed male mice (n=6/genotype) were matched
for body weight (p110Ŭlox/lox: 37.7±1.4 g vs p110Ŭlox/lox/SF1-Cre: 37.4±1.0 g, P=0.90) and
adapted to the TSE metabolic chambers. The mice were provided with HFD at 17:00 (2 hr
prior to dark cycle), and metabolic parameters were monitored from 24 hr before the HFD
feeding till 24 hr afterwards using the TSE metabolic chambers. Upper panels: temporal
levels of O2 consumption (a), CO2 production (b) and heat production (c). The arrow
indicates the beginning of HFD feeding. Lower panels: changes in O2 consumption (a), CO2
production (b) and heat production (c) between the 12-hr dark cycle before HFD feeding and
the 12-hr dark cycle afterwards in p110Ŭlox/lox/SF1-Cre and p110Ŭlox/lox mice. (d) HFD
intake during the 12-hr dark cycle in the TSE chambers. (e–f) The mice were maintained on
HFD for 6 weeks and weekly body weight gain (e) and energy intake (f) were recorded. (g–
h) Five-month old chow-fed male mice (n=6/genotype) were matched for body weight
(p110Ŭlox/lox: 31.5±0.6 g vs p110Ŭlox/lox/SF1-Cre: 32.4±1.1 g, P=0.51) and fasted for 24 hr.
The body weight loss was measured (g) and heat production was recorded using the TSE
chambers (h). (i) Fourteen-week old chow-fed mice were fed with HFD for 3 weeks (mean
body weight: p110Ŭlox/lox: 33.1±3.4 g vs p110Ŭlox/lox/SF1-Cre: 38.8±2.6 g, P=0.26), and
BAT were collected after euthanasia. Messenger RNA levels of indicated BAT genes were
quantified with real-time PCR (n=6 or 7/genotype). Data are presented as mean ± SEM, and
* P<0.05 and **P<0.01 between p110Ŭlox/lox/SF1-Cre mice and p110Ŭlox/lox mice.
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Fig. 4.
Deletion of p110Ŭ in SF1 neurons blunts the anorexigenic effects of central leptin. Five-
month old chow-fed male mice (n=4 or 6/genotype) were matched for body weight, and
received saline (1 ɛl, i.c.v.) at 16:00 followed by leptin (6 ɛg in 1 ɛl saline, i.c.v.) 24 hr
later. Leptin-induced reductions in food intake (a), meal size (b), meal frequency (c) and
RER (d) were monitored using the TSE metabolic chambers. (e) Leptin-induced weight loss
was measured. Data are presented as mean ± SEM, and * P<0.05 and **P<0.01 between
p110Ŭlox/lox/SF1-Cre mice and p110Ŭlox/lox mice.
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